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Abstract

Explainable AI has the potential to support more interactive and fluid co-creative AI
systems which can creatively collaborate with people. To do this, creative AI mod-
els need to be amenable to debugging by offering eXplainable AI (XAI) features
which are inspectable, understandable, and modifiable. However, currently there
is very little XAI for the arts. In this work, we demonstrate how a latent variable
model for music generation can be made more explainable; specifically we extend
MeasureVAE which generates measures of music. We increase the explainability of
the model by: i) using latent space regularisation to force some specific dimensions
of the latent space to map to meaningful musical attributes, ii) providing a user
interface feedback loop to allow people to adjust dimensions of the latent space
and observe the results of these changes in real-time, iii) providing a visualisation
of the musical attributes in the latent space to help people understand and predict
the effect of changes to latent space dimensions. We suggest that in doing so we
bridge the gap between the latent space and the generated musical outcomes in
a meaningful way which makes the model and its outputs more explainable and
more debuggable.
The code repository can be found at: https://github.com/bbanar2/
Exploring_XAI_in_GenMus_via_LSR

1 Introduction

Creating computing systems which can generate music has arguably been both a dream and a goal
of researchers since the 1800s when Ada Lovelace noted that machines would one day generate
“elaborate and scientific pieces of music of any degree of complexity and extent” [1]. Recently,
advances in the field of generative music have relied on increasingly complex Machine Learning
models [2–4] – such as neural networks [5, 6] and deep learning techniques [7–10] – to create
convincing musical outputs. However, the complex nature of these models means that people often
require some knowledge of these techniques and algorithms in order to use or adapt them effectively,
making them difficult for people, especially non-experts, to understand and debug. The presentation
of these models in current interactive musical systems also means that much of the generation process
is invisible to the user; very few musical applications provide an interface which allows the user to
visualise how a piece of music has been created or explain how their interaction affected the musical
content. This means many generative systems, and digital musical instruments in general, leave artists
feeling disconnected from their work, or worse, are generally inaccessible to musicians or anyone
besides the creator [11–13].

1st Workshop on eXplainable AI approaches for debugging and diagnosis (XAI4Debugging@NeurIPS2021).
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In this paper, we explore how eXplainable Artificial Intelligence (XAI) can be applied to generative
music systems to both aid with human understanding of the model and to support inspection and
debugging of the model and its outputs. First, we outline an overview of XAI and current applications
within the arts, followed by a summary of a systematic literature review of the explainability of 87
creative AI papers. Then we introduce our implementation of XAI for the arts by demonstrating how
the latent space of a generative music model can be made more explainable – we contribute a novel
user interface which supports real-time navigation of the latent space of a generative music model and
includes the generation of a set of piano rolls, colour plots, and audio files, for a trained MeasureVAE
[14] model. This is achieved by sampling the latent space from MeasureVAE and regularising the
dimensions for a set of musical metrics [15, 16]. We conclude by reflecting on the implementation,
and we suggest future directions for research on XAI for music and the arts.

2 Related Work

The field of eXplainable AI examines how machine learning models can be made more understandable
to people, thus increasing their usability and making it possible for non-experts to utilise them in
a variety of contexts. In particular, XAI researchers explore how non-intuitive and difficult-to-
understand AI models – such as neural networks and deep learning techniques – can be explained
[17, 18]. For example, XAI projects have focused on creating human-understandable explanations of
why an AI system made a particular medical diagnosis [19], how the AI models in an autonomous
vehicle work [20, 21], and what data an AI system uses to generate insights about consumer behaviour
[22]. These XAI applications improve human-in-the loop use, making it easier to integrate AI into
every day tasks and improve the accuracy of systems in combination with the expertise and human
intelligence of the user.

Having more explainable AI for the arts is important for AI arts systems that we co-create with,
referred to as creative AI models, as both artists and audiences would benefit from a better under-
standing of i) what an AI model is doing to generate artistic content and ii) why this artistic content
was generated in response to their own artistic input. This frames the AI as a tool for creating
and co-creating content, rather than a mysterious and opaque box of tricks, uncontrollable by the
artist. Indeed, having more transparent and understandable AI models is essential for creative AI as
co-creation implicitly requires some level of mutual understanding and engagement both with the
artistic output and with each other [23]. Co-creating with an AI requires us to be able to inspect,
understand, modify and debug both the AI model and the output it creates in response to an artist’s
input. In this way, the artist can understand their impact on the system and experience feelings of
ownership over their artwork. Designing for this level of understanding of what an AI system is doing
is a key focus of the field of XAI. More broadly, this relates to the notion of framing information
presented in [24] and surveyed in [25], whereby a generative AI system describes its creations with
additional text or other stimuli. This has been taken further in [26], with the suggestion that a creative
AI system should engage in dialogue with users to convince them of the value of its output.

The arts, and especially music, also provide a complex domain in which to test and research new AI
models and approaches to explainability. Compared to domains such as healthcare and automotive
industries, the arts require similar levels of robustness and reliability from their AI models, but
have significantly fewer ethical and life-critical implications, making the arts a great test-bed for AI
innovation. In other words, exploring approaches to XAI for the arts could both inform the design of
XAI for more safety-critical systems and lead to more intuitive and engaging co-creative AI systems.
For example, music interaction provides an opportunity to study a system’s sensitivity to time-critical
parameters since real-time, understandable feedback is critical for musicians in co-creating with
digital instruments [27, 28].

As current XAI research is predominantly focused on functional and task-oriented domains, such as
financial modelling, it is difficult to directly apply XAI techniques to creative AI models. Moreover,
the majority of papers about XAI beyond simple explanations do not focus on the implementation of
XAI, but instead offer design guidelines for explainability [29] or theories of how such explainability
might work [30]. This means that there are few explainable AI systems to build from. To compound
this problem, there are few creative AI models which provide any explanation of how the model
works or expose any elements of the creative AI model in any meaningful way, which we demonstrate
for the domain of generative music in the following section.
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2.1 XAI and Generative Music

Taking music generation as a key example of creative AI models, we surveyed 87 recent AI music
papers from venues including the New Instruments for Musical Expression Conference (NIME)
series and the Computer Music Journal to examine what role the AI had in the creative process
and how much of the AI in these interactive systems is actually explained or exposed to humans in
the system itself (rather than being explained in the paper). Our review sample started with the 94
papers reviewed in [3]; 19 papers which were purely related to cognitive theory or not accessible to
the authors were removed. We also added 12 more recent creative AI papers to represent current
practice, including the use of XAI in other HCI fields [31, 32, 30, 33–41], making a total of 87 papers
reviewed. We analysed the papers using three existing frameworks to capture the key features of XAI
for the arts. Specifically, we examined the following for AI in the interactive arts: the role of the AI
in co-creation, possible interaction with the AI, and how much common ground humans might be
able to establish with the AI, as follows.

The role of the AI – we used Lubart’s classification of the role of AI as a creative partner [42] to
classify the role of the AI from models which take care of generative tasks without interacting with
humans through to AI models which take on the role of a colleague in creative collaborations.

Interaction with the AI – we used Cornock and Edmonds’ classification of interaction styles with
interactive art from static to dynamic-interactive [43] as the more interactive and responsive an AI is,
the more chance there is for people to understand what the AI is doing and might do in the future.

The common ground with the AI – we drew on Clark and Brennan’s work on grounding in human
communication [44] to classify what a person might be able infer about an AI’s output state from a
low stage of grounding where a person is only aware that some output has been made through to a
high stage of grounding where they have an understanding of its meaning and can make an informed
reaction to the output.

Our perspective is that the explainability of creative AI is a combination of the role the AI takes, the
interaction it offers, and the grounding that can be established with the AI. The more collaborative the
role is, the more explanation is required which in turn necessitates more interaction and grounding.
Increased opportunities for interaction help people to learn about and infer an understanding of the
AI and its behaviour. Increased levels of grounding offer more chances for people to understand what
a creative AI did, and why. Increased interaction and grounding offer more changes for people to
inspect, understand, and debug AI models and their creative output.

In our review, we found some excellent examples of creative AI which take the role of a colleague. For
example, Shimon the robotic marimba player [45] listens to live human players, analyses perceptual
aspects of their playing in real-time and plays along in a collaborative and improvisatory manner. In
terms of interaction, Shimon provides a real-time feedback loop within the art work itself, making
the collaboration highly dynamic and interactive. However, Shimon offers only mid stage grounding
as there is no explanation of what it did, nor how or why Shimon made particular musical responses
in the improvisation.

Other generative tools, such as Hyperscore [46], demonstrate higher levels of common ground with
the user. In Hyperscore’s interface, the reactive change to input is displayed in a piano-roll notation.
This allows the user to observe the effects of their input and develop an understanding of the system’s
response. The interactive controls in the interface provide a way for the user to experiment with
melody creation, while the system preserves their original melodic curve ideas and allows them to
make incremental and reversible changes. In this way, the user can see how their input changes the
output; however, the internal model and the reasons why the system reacts are still largely obscured.

In our review, we found that 73 of the 87 papers took the role of generating music without any human
collaboration. There was also little interaction offered by the AI music systems we reviewed: 41
papers did not not offer any real-time interaction with humans at all, but rather generated melodies
from training data, without any user input or decisions. Additionally, 76 papers were at the lowest
stage of grounding meaning that although the AI makes a musical contribution, a person would not
reliably be able to discern what the AI system did based on their input, and would simply be aware
that some musical output was generated somehow. These kinds of creative AI are difficult to debug as
their implementations are not meaningfully exposed, and the technical complexity of their interfaces
prevents musicians from using them.
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To summarise, while there are compelling examples of creative AI systems that collaborate with
musicians, only a few creative AI systems explain what their models are doing, how they do it, and
why. This makes debugging such models and their output problematic. The rest of this paper explores
this gap through our approach to explainable latent spaces in music generation.

3 Explaining Latent Spaces

As our first step in investigating more explainable AI for the arts we have been researching how to
make latent spaces in AI music models more understandable. Recently, some systems developed for
human-AI co-creation have exposed the latent space of generative music models [23, 14, 47–49],
meaning that users can create their own music by navigating a possibility space, typically represented
on a blank 2D grid. For example, latent space models have been successfully used for creative
applications such as music generation [50, 51], music inpainting [14], and music interpolation [52].
However, to date, these systems have been opaque AI models and do not offer the higher-level XAI
properties of interaction and grounding we discussed in Section 2.1. For example, Murray-Browne
and Tigas [48] trained a latent space on a set of dance postures which was then mapped to various
musical outputs; although dancers found distinctive ways of performing with the system, how their
movements directly influenced the music was unclear. If we can offer more explainable approaches
to exposing latent spaces then there is more chance for people to be able to debug the AI model, its
training, and the output it generates.

For our system, we built on the popular MeasureVAE system1, which Pati et al. [14] describe as
being “successful in modeling individual measures of music”. In response to an input extract of
music, the model generates a similar measure of music by: i) encoding the input measure into a latent
space via bi-directional recurrent neural network (RNN), ii) sampling the encoder’s latent space (z),
and iii) decoding z via a combination of RNNs and linear stacks. Notably, the decoder uses two
uni-directional RNNs: one is responsible for beats (four beats in a measure), and the other one is for
ticks (six ticks/ symbols per beat) [14]. For a full description, we point the reader towards [14].

In keeping with current research on AI music generation we trained MeasureVAE using publicly
available music from a single genre to ensure coherence of the training data - in our case 20,000
publicly available monophonic Irish folk melodies [53]. The data is partly anonymous, showing
contributor’s names from a community website dedicated to Irish traditional music, and contains no
offensive content. This produces a latent vector of 256 dimensions, as illustrated in Figure 1. Once
trained, inputting a melody into the encoder will generate a new melody through the decoder. The
features of the new melodies can be varied by modifying the values of the dimensions in the latent
vector. However, there is no way for a person to know what effect changing these dimensions would
have on the generated music. In addition, the 256 entangled dimensions make it difficult to perceive a
difference in output from a change in any single dimension, making our Irish folk song generator
opaque and unexplained.

Figure 1: The simplified MeasureVAE

However, if we use latent space regularisation (LSR) [54] in training the VAE – which has been
widely used in the study of controlled generation of images [55] and music [15, 56] – we can make
this creative AI approach more understandable and explainable. We use LSR to force some specific
dimensions of the latent space to represent specific musical attributes similar to the method in Pati
and Lerch [15, 16]. Specifically, we assign dimensions 0, 1, 2 and 3 to rhythmic complexity, note
range, note density, and average interval jump respectively (see Figure 2). We selected these metrics

1[14] and [15], which we build upon in our work, are licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.
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as typical examples of meaningful musical features used in current research in order to demonstrate
our approach.

Figure 2: The simplified MeasureVAE with LSR

In this way, specific dimensions in our latent space correspond to meaningful musical attributes in
AI-generated outputs. Since these attributes are manipulable, they can form the basis for a real-time
user interface illustrated later in this paper, thereby creating a feedback loop between input music,
human modifiable dimensions, and AI-generated music. We suggest that this feedback loop can
support the debugging of the creative AI and its output. Furthermore, we suggest that this support can
be offered in a form that is commensurate with musician’s existing skills and usability expectations.

3.1 Implementation

To utilise the MeasureVAE architecture with the latent space regularisation technique, we build on
the implementation of [15]2. The training data of 20,000 monophonic Irish folk melodies [53] are
converted into a measure-based data representation. Each measure is represented with 24 characters,
where each character corresponds to one of the sixteenth note triplets in a 4/4 measure, with a total of
24 characters per measure [14, 16]. These characters include note names (A3, G5, ...), continuation
tokens (_) and special rest tokens.

We use four musical attributes in our model following [15, 16]; Toussaint’s rhythmic complexity [57],
note or chromatic range (max pitch - min pitch), note density (number of notes in a measure) and
average interval jump. Average interval jump represents the average of the absolute values of the
interval between adjacent notes in a single measure melody.

We jointly train our MeasureVAE model with latent space regularisation on all four attributes, to force
four specific dimensions of the latent space to represent given musical attributes [15, 16]. We apply
these constraints to the first four dimensions of the 256-dimensional latent vector, and assign them to
rhythmic complexity, note range, note density and average interval jump, and add an attribute-specific
regularisation loss to the training objective of the VAE. Specifically, for each attribute, a musical
metric value (e.g. average interval jump) is calculated for each item in a mini-batch. Then, a distance
matrix (Dattribute) is created by calculating the distance between each item’s metric value and all
the other item’s metric values resulting in an N x N matrix (N examples in a mini-batch). Similarly,
another distance matrix (Ddimension) is created for the values of the regularised latent dimension,
again resulting in an N x N matrix. Subsequently, the mean squared error of (tanh(Ddimension) -
sgn(Dattribute)) is added to the VAE objective. Finally, after training the model with LSR, the values
of these dimensions become monotonically tied to the corresponding music attributes. Therefore,
when we change the values, the corresponding attributes of the generated music change accordingly.

We use Adam [58] as the optimizer of the model with learning rate = 1e-4, β1 = 0.9, β1 = 0.999 and ϵ
= 1e-8. The model is trained on a single GeForce RTX 2080 Ti GPU for a total of 30 epochs following
the same setting of [15], taking an average of 2.5 hours per epoch. After training, the reconstruction
accuracy of the LSR model achieves 99.87% on the training set and 99.68% accuracy on the validation
set, and the non-LSR model achieves 99.84% and 99.77% respectively3. As calculated in [15, 16],
we have an interpretability metric, which is from [59] and measures how well we can predict an
attribute using only one dimension in the latent space. For the LSR model, interpretability scores
for rhythmic complexity, note range, note density and average interval jump are 0.80, 0.99, 0.99 and
0.91 (average 0.92) for their corresponding dimensions, respectively (the higher the better). For the
non-LSR model, interpretability scores are 1.5e-4, 9.1e-6, 1.7e-5 and 1.2e-6 in the same order.

2https://github.com/ashispati/AttributeModelling
3The non-LSR model is trained for 11 epochs as this gave the best accuracy.
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Figure 3: Screenshot of the user interface with LSR

Two user interfaces (UIs) were built using React.js and deployed as web applications online to
demonstrate interaction with LSR4 and without LSR5. In each demonstration, we encode an input
MIDI measure using the trained encoder and obtain its latent vector. Then, to generate musically
controlled variations of it, we manipulate the values of the first four dimensions and decode these
manipulated latent vectors to obtain output music sequences. To demonstrate the explainable latent
space, we sweep the regularised latent dimensions discretely and sample values. For each dimension,
we take 10 equally spaced samples, creating every possible latent vector combination using these 10
samples per regularised dimension, in total 10,000 latent vectors for four dimensions / attributes. In
these latent vectors, values for non-regularised dimensions are kept as they are in the latent vector
of the encoded input sequence. To determine the sampling limits, we store the latent vectors of the
training set and generate histograms of the regularised dimension values. The limits are then set
according to the histograms (with slight modifications to allow wider ranges in terms of the musical
metrics). Once we have these 10,000 latent vectors, they are decoded into output music sequences
and we generate MIDI files of them. For the sake of practicality, we generate piano-rolls and MP3
files for each MIDI output in advance, and host them online for the web demos. The generated MIDI,
piano-roll and audio files are available at our GitHub repository6.

3.2 Interaction

Both demos feature UIs that provide real-time interaction with our creative AI system. For example,
Figure 3 shows the UI for the demo with LSR. In both UIs the input MIDI measure is shown and can
be listened to on the left-hand side of the UI in piano-roll format, and the generated output MIDI
measure is shown and can be listened to on the right-hand side of the UI also in a piano-roll format.
The main points of interaction are two 2D-pads in the centre of the UI; when clicked on, the user can
navigate the pads by dragging their mouse, which controls the red dot. The left-hand pad controls
the rhythmic complexity and note range dimensions, whereas the right-hand pad controls the note
density and average interval jump dimensions (see the axis labels on the LSR version in Figure 3).
These two pairings were chosen to maximise the semantic differences between the dimensions in
each pad in order to offer users more observable effects of changes in position within the pad.

The white dots on the 2D pads refer to the corresponding latent vector dimension values of the
input sequence, given as reference points. As users hover over these pads – selecting different latent
dimension values – the output MIDI is updated in real-time and played back to people. Musically,
these outputs correspond to variations of the input sequence which vary as we manipulate its latent

4https://xai-lsr-ui.vercel.app/
5https://xai-no-lsr-ui.vercel.app/
6https://github.com/bbanar2/Exploring_XAI_in_GenMus_via_LSR
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vector for generation; for example, we will have a higher range of notes in the generated musical
sequence when the note range dimension is high.

In our demo with LSR we increase the explainability of the AI in two ways: i) key parts of the AI
model are exposed to the user in the interface and meaningfully labelled (in this case, with musical
features), and ii) the real-time interaction and feedback in the UI allows people to explore the effects
of these features on the generative music and thereby implicitly learn how the model works.

Referring to the three properties of XAI for the arts described in Section 2.1, in our implementation
the AI acts somewhat like a colleague [42] – the response to the user is given in real-time, as would
be done in a human-to-human musical interaction. This drives a feedback loop between a user and
the AI, whereby a person’s reaction to the AI’s response informs the subsequent interaction. Thinking
musically, this resembles a duet in creative improvisation, where the players make real-time decisions
based on their colleague’s performance.

In terms of grounding between the AI and the user, the system displays the possible user input param-
eters to the model through the labeled pads, 2D displays, and movable cursors, and moreover, the
visualisation changes in response to these control actions. As the UI provides musically meaningful
labels and an interaction feedback loop (which allows for exploratory user learning to predict how
user input might change the AI’s output), we see this system as being towards the highest level of
grounding [44], where a person is provided with cues to the AI model’s current state and can predict
possible next steps. Furthermore, the real-time interaction creates a sensation of “playing” the model
and helps to recreate other familiar musical interfaces through the use of the piano-roll notation.
Real-time feedback provides musicians with an assurance that their input is being received, increases
accuracy in timing during use, and positively influences their perceptions of the quality and usability
of a system [27]. Comparing this to other generative music systems which often take input at the
command line, the use of pads and sliders and note visualisation on a piano-roll (commonplace in
digital musical interfaces) is more intuitive and typical of musical interaction. In this sense, the
system provides an interaction which is both dynamic and understandable in terms of the generative
system itself and also tailored around the specific context of music creation.

3.3 Visualisation

To provide further insight into our AI model, we display three 2D plots within each of the pads
based on the visualisations in [15] as illustrated in Figure 4. Firstly, training data contribution plots
(4a and 4d) for the left and right-hand pads respectively represent how many items in the training
data set have contributed to a specific location in the latent space. Statistically, this provides an idea
of how unlikely the output will be for any location, given the musical structure of the dataset. In
each of the pads we also have two surface map figures as used in [15, 16] and illustrated in 4b and
4c for the left-hand pad, and 4e and 4f for the right-hand pad. We create these surface maps by
decoding corresponding latent vectors for each point (non-LSR dimensions are kept the same as the
encoded input vector, and the other two LSR dimensions are taken from the latent vector of the input
music) and calculating the musical attribute values for each decoded sequence. Since we have two
attributes per 2D pad, we have two surface maps for each pad. These surface maps illustrate how the
LSR technique works since the metric values increase (yellow regions) for the higher parts of the
corresponding axis. These surface maps also offer detailed information about regions to hover over,
and allow inference of the potential kinds of outputs resulting from different points in the latent space
dimensions. In doing so we offer a different kind of explainable interaction than other creative AI
systems which allow interaction with latent space such as [49, 47, 48]. In other words, we increase
the explainability of the UI by providing a rich visualisation from which people can infer, with some
meaning, the gist of what the AI model might generate for particular latent dimension values as they
interact with it.

The non-LSR demo UI surface maps are different to the LSR version and show the same musical
attribute value for any point in the latent space. This is because there is nothing meaningful about
these dimensions as LSR has not been applied and changing the value of these individual dimensions
in a 1 x 256 vector does not have any significant effect on the decoded sequence (which is to be
expected behaviour for this non-LSR case). In other words, simply visualising the surface maps in
the non-LSR version does not increase the explainability of the AI.
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(a) TDRCNR (b) RC (c) NR (d) TDNDAIJ (e) ND (f) AIJ

Figure 4: Visualisations: a) Training Data visualised in terms of rhythmic complexity and note
range (TDRCNR); b) Rhythmic Complexity surface map (RC); c) Note Range surface map (NR);
d) Training Data visualised in terms of note density and average interval jump (TDNDAIJ); e) Note
Density surface map (ND); f) Average Interval Jump surface map (AIJ)

3.4 Debugging

By using latent space regularisation to force a small set of dimensions to be mapped to semantically
meaningful musical features, we hope to better support artists using MeasureVAE in key debugging
activities of inspecting the model, understanding how the model works, and changing the model to
create the desired output.

We suggest that the real-time nature of the feedback provided by our demo would make it easier
to inspect and develop an understanding of the AI model. The user is immediately able to see the
results of their actions, which informs any follow-up from the user needed to debug the system or
their previous input. While this is an important feature for debugging in general, it is especially the
case in a music context: musical interaction is time-dependent, meaning an artist must quickly be
able to make an informed reaction or otherwise risk derailing a performance or composition process.
By supporting real-time feedback, we increase the common ground between the AI and the human.
This elevates the creative process from a situation where we know that the AI has done something in
response to our input, but we are not sure what (e.g. Shimon [45]), to a level where we can directly
see and start to understand what the AI has done in response to our input. We suggest that users
would thus be able to predict (with some learning on the human side) how changes to the regularised
dimensions of the latent space change the generative output in a way which can better fulfil their
musical intentions. It is worth noting that there are many other time-sensitive applications where such
XAI features would greatly benefit the user, including the more functional and task-oriented tools
described earlier in medical care and transportation.

Importantly, our demo retains its original input whilst other parameters are changed. This allows
users to compare the current AI output with their original contribution, contributing to debugging
of expected outcomes. This is similar to the design of Hyperscore [46], where a melodic curve is
always retained as reference, whilst other parameters are changed. Moreover, in our demonstration,
users are able easily revert back to previous settings by moving the red dots in the UI (Figure 3)
between different positions in the latent space. Users are also able to quickly observe the results
of their tinkering in real-time, and so may develop a better understanding of the mapping between
changes in latent space dimension values and the resultant generated output. This form of interaction
allows for trial-and-error debugging of the creative output as well as supporting users in exploratory
learning of dimension mappings. In this way, we support creativity support tool design principles
such as Shneiderman et al.’s [60] principles of supporting exploration (as people can quickly trial
different ideas), and offering a ‘high ceiling’ of tools (as people can tinker with a wide range of
different options).

In summary, combining support for inspecting and understanding of the AI model with being able
to interactively manipulate the model offers us opportunities to debug the model. In other words,
by providing more grounded and interactive explanations of what the AI is doing we offer greater
opportunities for creative exploration of the musical space, and importantly, increased support for
debugging of both the creative output and the AI model itself.

4 Limitations, Societal Impact, and Future Work

There are currently several limitations to our demo which need to be addressed in further work. Firstly,
the musical parameters chosen for interaction with the system are a somewhat arbitrary selection
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of parameters typically found in contemporary research on AI music generation and present only a
small subset of the variables in music creation. Future work needs to explore which features are most
useful for explaining the workings of the AI model.

Secondly, the system and interaction focus on manipulating the pitch and rhythmic aspects of a single
measure of music. This ignores timbre and higher-level structure in music, operating with only a
fraction of the variables musicians have control over on a traditional instrument or composition tool.

Thirdly, for a non-musical user, the system may still present some explainability barriers. The chosen
parameters – although labelled and visualised – require the user to have some prior understanding of
music. Other control mechanics, such as the semantic sliders used in [23], may be more appropriate,
although they currently do not give explanations for the link between interaction and output.

Fourth, our surface map visualisations are static and intended to be illustrative of the regularised
dimensions. Future work could investigate dynamic surface maps which are rendered according to
the currently selected points in the dimensions e.g. the surface map for the note density & average
interval jump 2D pad could be changed in real-time according to the currently selected point in the
rhythm complexity & note range 2D pad.

Fifth, we only focus on explainability of the latent space forming at the bottleneck of the MeasureVAE
architecture, in-between the encoder and decoder blocks. To extend explainability to the layers of
encoder and decoder blocks, one technique we are interested in applying is Concept Whitening
(CW) [61]. CW can be practically applied to any layer of a network and could be used to demystify
how the network learns concepts through those layers without harming the main training objective.
This technique aligns concepts, which in our case might be musical attributes or more high-level
concepts such as genres or moods, with latent space axes of a given layer by doing de-correlation,
standardisation and orthogonal transformation [61].

Sixth, the comparison of the LSR version to the non-LSR version of the demo might be improved
by using some non-semantic dimensionality reduction technique in the non-LSR demo to address
the lack of perceptible effect of user changes to dimensions in the non-LSR demo. For example,
the non-LSR demo could be extended to compute Singular Value Decomposition (SVD) in the
latent space over the training set and then allow the user to manipulate the four SVD directions
with the highest variance. This would allow comparison of two demos in which user interaction
has perceptible effect on both demo’s musical output, allowing us to compare the explainability of
semantically regularised dimensions versus non-semantic dimensionality reduction.

Finally in terms of implementation, the novelty of our implementation demo is limited as it in-
volves the combination of two published approaches. Future work needs to explore a larger set of
combinations of approaches drawing from both published and unpublished research.

Our current system suffers from a problem commonly found with AI music models: the dataset
used to train the model is limited within the Western music canon, and even more so to a specific
genre of folk songs. This limits the output to specific tonal and rhythmic features. It is possible
that the compositions created using a tool like ours will sound similar to the songs of the dataset
we use, which decreases the diversity of music created. Future research should explore the utility
of our approach with training sets of different genres of music, and also training sets containing
combinations of genres.

The system presented in this paper needs in-depth study and validation by users with a range of
musical knowledge. For example, we selected two pairings of dimensions for the 2D pads in the
centre of the user interface as discussed in Section 3.2. The validity of this design choice needs to
be evaluated with users in terms of: i) whether the chosen pairings (left-hand: rhythmic complexity
& note range; right-hand: note density & average interval jump) are the most useful and intuitive
for users; and ii) whether including additional 2D pads would improve the explainability of the
system or instead be confusing for users e.g. six 2D pads could be displayed to users to present all
possible combinations of the four LSR dimensions but this would substantially increase the visual
complexity of the user interface and may lead to cognitive overload. In addition, further development
of such a system must include working directly with potential users on how such a system may
benefit their composition or performance practice, and how their own artistic identity can be better
incorporated and expressed. Moreover, explorations of use cases by artists will further suggest
interaction mechanics and changes to the user interface, and provide insight into how the system
might assist in creative and debugging processes.
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As we outlined earlier in this paper, undertaking AI research in the arts provides a demanding
real-world and real-time context in which approaches such as XAI can be explored, without the risk
of substantial negative societal impact in life-critical domains such as healthcare and automotive
industries. However, there are potential negative societal impacts on artistic practice and livelihoods
of our work and creative AI research in general which must be considered. Most importantly, some
argue that co-creative AI would diminish human creativity, remove the human from the creative
process, and devalue human creativity itself. There is also concern that the use of generative models
would lead to a homogenisation of music and a marginalisation of musical skills and traditions which
are not amendable to reproduction by AI. In our view, through human-centred XAI and the design
of UIs which embrace the user’s role and interaction with the AI model, as presented here, we can
proactively work to ensure that the artist remains key to the the creative process. Indeed, our view
is that working with artists to design and implement explainable AI systems will help to mitigate
concerns about the impact of AI on creativity.

5 Conclusions

Explainable AI is a growing research field which has the potential to contribute to making AI systems
more co-creative. Taking AI music as a key example of AI for the arts, it is clear that there is huge
potential for more explainable AI models, given the limited explainability of current creative AI
models. Typically, these offer limited interaction and low levels of grounding between AI and human
– a situation where we notice that the AI has created something, but are not sure how the AI output
relates to our input. In this paper, we demonstrated how latent spaces can be made more explainable,
and in doing so showed how they could support debugging as part of creative practice.

We suggest that future work in XAI for the arts should move away from the functional explanations
explored by current XAI research and focus instead on conveying the gist of what AI models are
doing. Much like the third wave of Human-Computer Interaction (HCI) [62] which shifted HCI
research to focus on experience and meaning making, conveying gist will be a paradigm shift in
how we design and use AI in creative settings. By following an interdisciplinary approach, where
creative AI presents information that is meaningful to people – such as by presenting visual cues
between mappings [49], or visualising levels of mutual trust with emoticons [63] – we can better
support human-AI collaboration. Once we create AI systems that convey the gist of what they are
doing creatively, we will have the chance to mutually engage with AI in co-creation.

Finally, we believe that when we think of “explainable” AI, we should consider how the design of
our systems embrace the existing knowledge, experience, and practices that users will bring to the
interaction cf. [29]. A critical question designers can ask is whether the AI is explained in the context
in which it will be used. In this paper, we present an interactive music generation system which works
with interface elements familiar to musicians, and focuses around the real-time feedback relationship
between musician and instrument. In presenting the AI within the existing musical context, we can
increase the grounding between user and AI as tool and even collaborator. In similar applications of
XAI and the arts, and indeed in all applications, this attention to context and using what is already
understandable to users will aid the explanation of the underlying systems.
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